Restrictiveness of constraint indexation a case study on segmental contrast

Aleksei Nazarov **Utrecht University** a.i.nazarov@uu.nl

/es-e/

/is-e/

/is-i/

ese

ese

requires indexation for contrast and opacity

requires indexation for contrast and exceptions

requires indexation for contrast

T: Harmony before i-Pal: /is-e/ → isi → iʃi O: i-Pal before Harmony: /is-e/ → ise → isi E: /is/ does not undergo i-Pal across the board

R1

ese

No m-ph analysis:

/ese/, /ise/, /isi/, /usi/

With m-ph analysis:

/es-/

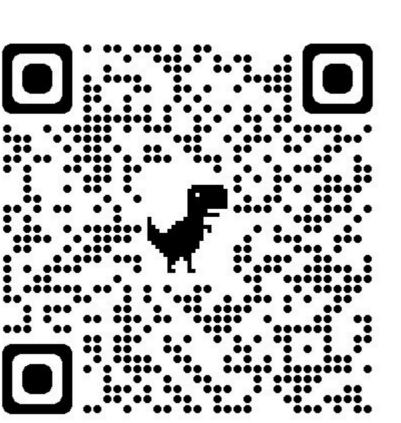
/es-e/, /<u>is</u>-e/, /<u>is</u>-i/, /us-i/

usu

osi

R3

eso

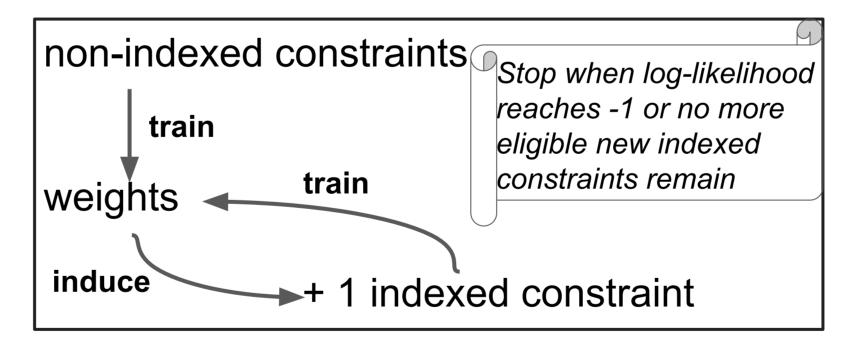

Introduction

- Indexed constraints often viewed as last-resort strategy (e.g., Becker 2009, Pater 2010) with few restrictions
 - Likewise for cophonologies (Inkelas & Zoll 2007)
- Argument: indexed constraint analyses are restrictive
- Content of CON still restricts what patterns are expressible
- Expressible patterns are not always discoverable/learnable
- Based on segmental contrast application of indexed constraints
- Extra powerful and seemingly unrestricted version

Segmental contrast indexed constraints

- Indexed constraints: defined phonologically & morphologically:
 - Pater (2000) et seq.: apply only to particular words/morphemes
 - Temkin-Martínez (2010), Round (2017): instead, apply only to particular **segments** in lexicon
- This encodes segmental contrast (e.g., Dresher 2009)
- Allows contrast-based (cf. Łubowicz 2012) account of opacity (Nazarov 2020)
- Still allows for modelling lexical exceptions (Pater 2000)

Download:



https://alekseinazarov.org/papers/

*[-hi] _k	¦*s i _k	Harmony	*∫
	 	 	*!
	 	*!	
*!	 	 	
	 *!	 	
	 	 	*
*!	i i	* ! *	
!	 	 	
	*!	*!	*! *! *! *

Contrast Indexation MaxEnt Learner (CIMEL)

- Premise (same as Becker 2009, Pater 2010):
 - Non-indexed constraints are universal (defined by user)
- Indexed constraints induced as needed
- Novelty: combines two additional aspects
 - o uses MaxEnt (Goldwater & Johnson 2003), see Nazarov & Smith (in prep)
- finds segmental contrast indexed constraints, see Round (2017)
- Indexed constraints induced iteratively, one by one:
- calculate gradients of constraint weights given individual segments in lexicon
- pick constraint with greatest relative disagreement between segments
- segments with positive gradient: associated with new indexed constraint

Weights trained using Byrd et al.'s (1995) algorithm within Staubs' (2011) implementation

Non-indexed constraint induction (e.g., Hayes & Wilson 2008): possible extension of this model, not considered here

References

Becker, M. 2009. Phonological Trends in the Lexicon: The Role of Constraints. UMass Amherst dissertation. + Byrd, R.H., P. Lu & J. Nocedal. 1995. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM Journal on Scientific and Statistical Computing, 16.5:1190-1208. ◆ Dresher, B.E. 2009. The Contrastive Hierarchy in Phonology. CUP. ◆ Goldwater, S. & M. Johnson. 2003. Learning OT Constraint Rankings Using a Maximum Entropy Model. In J. Spenader, A. Eriksson & Ö. Dahl (eds.), Proceedings of the Stockholm Workshop on Variation within Optimality Theory. Linguistics Department, Stockholm University. + Hayes, B. 2004. Phonological acquisition in Optimality Theory: the early stages. In R. Kager, J. Pater & W. Zonneveld (eds.), Fixing Priorities: Constraints in Phonological Acquisition. CUP. ♦ Hayes, B. & C. Wilson. 2008. A Maximum Entropy Model of Phonotactics and Phonotactic Learning. Linguistic Inquiry 39.3:379–440. ♦ Inkelas, S. & C. Zoll. 2007. Is Grammar Dependence Real? A Comparison Between Cophonological and Indexed Constraint Approaches to Morphologically Conditioned Phonology. Linguistics 45.1:133–71. ★ Łubowicz, A. 2012. The Phonology of Contrast. Equinox. ★ Nazarov, A. 2020. 'Bedouin Arabic multiple opacity with indexed constraints in Parallel OT.' In H. Baek, C. Takahashi & A. H.-L. Yeung (eds.), Supplemental Proceedings of the 2019 Annual Meeting on Phonology, LSA. ♦ Nazarov, A. & B. Smith. In preparation. Generalizing French schwa deletion: the role of indexed constraints. In preparation for Supplemental Proceedings of the 2022 Annual Meeting on Phonology. ◆ Pater, J. 2000. Non-uniformity in English secondary stress: The role of ranked and lexically specific constraints. Phonology 17.2:237–74. ◆ Pater, J. 2010. Morpheme-specific phonology: Constraint indexation and inconsistency resolution. In S. Parker (ed.), Phonological argumentation: Essays on evidence and motivation. Equinox. Prickett, B. & G. Jarosz. 2021. Modeling the Acquisition of Phonological Interactions: Biases and Generalization. In *Proceedings of the 2020 AMP*. + Prince, A. & B. Tesar. 2004. Learning phonotactic distributions. In R. Kager, J. Pater & W. Zonneveld (eds.), *Fixing* Priorities: Constraints in Phonological Acquisition. CUP. A Round, E. 2017. Phonological exceptionality is localized to phonological elements: The argument from learnability and Yidiny word-final deletion. In C. Bowern, L. Horn, R. Zanuttini (eds.), On looking into words (and beyond): Structures, relations, analyses. Language Science Press. Staubs, R. 2011. Harmonic Grammar in R (hgR). Software package. http://blogs.umass.edu/hgr/ Temkin-Martínez, M. 2010. Sources of Non-Conformity in Phonology: Variation and Exceptionality in Modern Hebrew Spirantization. USC dissertation.

Data

- Data: 6 toy langs based on Prickett & Jarosz (2021)
 - 8 stems: {eoiu} followed by {fs}, e.g., of-, es-, is-. us-
 - 3 suffixes: -e, -i, -u
- 3 non-random languages:
- V height harmony + Transparent i-Palatalization (T)
- V height harmony + Opaque i-Palatalization (O)
- V height harmony + Exceptionful i-Palatalization (E)
- 3 random languages (R1, R2, R3):
- Random output candidate picked for every input
- Constraints provided:

Context-free:	*∫	*[+cor]	*[+hi]	*[+bk]	*[-cor]	etc.	
Pro-palatalization:	*si	*si				9	
Pro-height harmony:	* [+hi] [-hi]	*[+hi] [-hi]	* [-hi] [+hi]	*[-hi] [+hi]	Во	ld = "focus" of constraint	
Pro-backness harmony:	* [+bk] [-bk]	*[+bk] [-bk]	* [-bk] [+bk]	*[-bk] [+bk]	(an	nenable to indexation)	
Faithfulness, if active:	ldent				U		

Learning scenarios

- Two stages in phonological acquisition (Hayes 2004):
- Phonotactic stage (learn possible words)
- Morphophonological stage (learn alternations)
- Morphophonological acquisition requires:
- Access to morphonological analysis (find words that share morphemes)
- Access to faithfulness constraints
- Here: three scenarios considered:
- 1. Fully phonotactic stage (no morphophonological analysis, no faithfulness constraints)
- 2. Transitional stage (morphophonological analysis, no faithfulness)
- 3. Full morphophonological stage (morphophonological analysis & faithfulness)

				,				
Results	Averaged log-likelihood for all conditions							
ixesuits		Т	0	E	R1	R2	R3	
• CIMEL run 5× for each language × learning scenario		002	01	005	-24	-24	-23	
Testing of resulting weights and indexed constraints: Out of likelihood of training data > 12	2.	01	01	01	-44	-45	-43	
 Log-likelihood of training data ≥ -1? Generalization: Richness of the Base (ROTB) to the Base (ROTB)	3.	003	002	002	-44	-44	-40	

Shaded cells: passed log-likelihood and ROTB tests

Discussion and conclusion

- Random languages (R1-3) not learned:
- Available pressures (pro-palatalization, pro-harmony etc.) not sufficient to model these patterns
- Non-random languages learned, but only pass ROTB test under scenario 2. (Transitional stage):
- Scenario 1: does not allow learner to generalize between instances of same morpheme
- Scenario 3: Faithfulness reduces motivation to induce contrast-based constraints
- A Markedness-over-Faithfulness bias (Hayes 2004, Prince & Tesar 2004) might help
- Indexed constraints may not be as robust and unrestrictive as they seem:

■ For segments of /is-e/, consider all possible index assignments

■ Always ≥95% probability on some attested form?

- Indexed constraints are only as strong as the possibilities of their non-indexed counterparts
- Learner must have enough knowledge and motivation to discover the correct indexed constraints